RFSOI and FDSOI enabling smarter and IoT applications

Kirk Ouellette
Digital Products Group
STMicroelectronics
ST in the IoT already Today
ST in the IoT already Today

ST is leading the IoT Standard Component Market with STM32 and MEMS today

Wearable
Fitness
Smarthome
Metering
Entertainment
Wellness
IoT Market Dynamics

Cloud & Network infrastructure

Traffic & storage explosion driving

Technology impact
- Higher integration & performance
- Power efficiency
- 5G and 60GHz enablement

IoT and Mobile Phone Devices

Explosion of connected devices

Technology impact
- Ultra low power sensors
- Integration Digital, RF, Power Management
- Higher performance at lower power

FDSOI, RF BiCMOS and Silicon Photonics are enabling 100G+ and 5G infrastructure for the IOT Explosion

Today's Discussion:
RFSOI and FDSOI
Acceleration of smarter integration in the IoTClient

- RFSOI – 130nm and lower
 - Higher Integration of RF components for the interface to the internet
 - LTE, Wifi etc
 - Able to replace RF Filters and GaAs discrete components required today

- FDSOI – 28nm and lower
 - Perfect fit for Advanced IoT Main SOC
 - High Speed with Low Power and Leakage
 - Easy Integration of Analog SOC interfaces into main SOC
RFSOI - RF and Wifi Front End Modules integration for IoT
The IoT: Leveraging the Internet to make Things smarter…
RF demands increasing in clients

More bands with LTE

Carrier Aggregation for faster data transfer

MIMO – Multiple Input, Multiple Output, 60GHz, 5G

Envelop Tracking
RF Front End Development trends

Switch
- LTE-A increasing switching requirements
- MIMO techniques increase complexity of antenna switch
- CA requires level of linearity at target of -90 dBm harmonic

Power Amplifier
- PAs number increase to support the growing number of frequency bands and more complex MIMO architectures
- Demand for high-performance PAs push towards new architecture

Filters
- High number of bands and co-existence with other wireless technologies (WiFi, Bluetooth both operating at 2.40-2.48GHz) drives more use of both BAW and SAW filters
RFSoI Adoption

<table>
<thead>
<tr>
<th></th>
<th>GaAs</th>
<th>SoS</th>
<th>CMOS</th>
<th>RFSoI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion loss</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Isolation</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>PA linearity/PAE</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Low Cost</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Integration</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

The answer to FEM complexity growth is the RFSoI integration

RFSoI is closely following GaAs PA performance now

Benefits of Monolithic Integration

- Reduced size and cost
- Improved performance
 - Reducing inter-die signal routing and constrains of MCM
 - Taking advantage of shorter and faster on die interconnection
- Simplified supply-chain
- Reduced and simplified product development cycle time
RFSOI FEM Integration: The Next Step

Front-End integration is the path for small, performing and cost effective solutions to address 3G LTE/4G CA and WiFi 802.11ac
ST H9SOI_FEM: The Technology for FEM integration
From H9SOI to H9SOI_FEM
14 Years of History

• H9SOI is the result of a close collaboration started in 2000 among CEA-Leti, STM and SOITEC

• H9SOI in production since 2009
 • More than 500M RF switches produced for Mobile Applications

• H9SOI_FEM introduced in 2013 with
 • Better performances
 • Optimized and simpler process
 • Reduced lead-time
 • Switch/PA/Filters integration capability
H9SOI_FEM: developed for FEM integration

Switching
2G Switches
3G / 4G Switches
Antenna Tuning

Power Amplifier
MMMB PA
MMMB PA + Switches

Filtering
MMMB PA + Switches
Antenna Tuning
ET Energy Management Filtering

Antenna Tuner
Tunable Duplexer

LNA

ST testchips
FDSOI – For IoT SoCs and Infrastructure SoCs
A Transistor Technology

Typical Transistor in today CMOS System on Chip

Change of Substrate adding the thin Buried oxide

Improving power Efficiency – Bringing high flexibility in SoC integration

Kirk Ouellette More then Moore Workshop - Shanghai - March 17, 2015
FD-SOI addressing Power sensitive Markets

- **FinFet**
 - High end servers
 - Laptops & tablet-PC

- Ultimate Digital Integration

- Ultimate Digital + AMS + RF + … Integration
 - Consumer Multimedia
 - Internet of Things, wearables
 - Automotive

Available from 28nm node

Kirk Ouellette More than Moore Workshop - Shanghai - March 17, 2015
FD-SOI: Performance and Simplicity

- Fully depleted transistor but different rotation
- FD-SOI re-use most of Planar Manufacturing

FD-SOI Process steps:
- Same as 28LP...
- FD-SOI specific 2%
- Adjusted from 28LP 14%
FD-SOI Benefits for the IoT

Challenges

- Ultra low power SOC
- Integration
- Power / performance flexibility

Benefits

- Ultra low voltage operations with high performance.
- Easy and efficient analog integration (ADC/DACs, RF, LDOs, …)
- One Devices for all voltages - sleep mode not needed

Smart Car
Smart Home
Healthcare wellness
Smart City
Smart Industrial

Kirk Ouellette More then Moore Workshop - Shanghai - March 17, 2015
Extreme Scalability in Power/Performance

FD-SOI

- Allows the widest V_{dd} range for voltage scaling without impacting CPU performance
- Still guaranteeing top speeds at very low voltage
- Unique FDSOI techniques enable energy efficiency optimization further by body biasing

Example – Application Processor running Dual Cortez A9 from 1Ghz to 3Ghz efficiently

Real measurements of continuous DVFS in the range 0.5V – 1.4V
Performed on a very large number of ICs, showing extremely good reliability of the DVFS in this range
Example: Ultra Low Power in IoT

X3 to X6 Power Consumption Improvement with FD-SOI

* Measured on Silicon / Product Simulation
** Projection
Advantages in Analog Design

Efficient Short Devices
- Efficient use of short devices:
 - High analogue gain @ Low L
 - Low Vt mismatch (Avt ~ 2mV/μm)
- Performance example:
 - A 10μm/100nm device has a DC gain of 100, & a σVt of only 2mV!

Improved Analog Perf.
- Higher Gm for a given current density
- Lower gate capacitance
- Higher achievable bandwidth or lower power for a given bandwidth

Improved Noise
- Same normalized drain current noise between BULK and FD-SOI
- Lower noise variability for FD-SOI
- Improved noise in FD-SOI

Porting of most Analog Macros simpler into FDSOI then FinFET or Bulk Planar

Courtesy, L. Vogt, F. Paillardet, C. Charbuillet, P. Scheer, STMicroelectronics
Path for IoT Performance and Integration

+35% speed
-50% power

FD-SOI
14nm

Body Bias, cost, simplicity, reliability

FD-SOI
28nm

RF, Mixed Signal
Ultra Low voltage
Embedded Non Volatile
High Density & perf RAM

Differentiated options for the long lasting 28nm process node

Kirk Ouellette More than Moore Workshop - Shanghai - March 17, 2015
Fast Growing Ecosystem

Ecosystem
- Products
- Services
- IPs
- Tools & EDA
- Wafer & Foundry

Enabling Consumer, Mobile, Networking and Automotive markets today
• FDSOI has many designs on-going world wide
 • Multiple applications including IoT
 • Mature Design and Manufacturing available now

• Rapidly growing Ecosystem
 • Production of FDSOI products in various applications starting this year

• Key benefits for IoT applications
 • Performance vs. Power scalability
 • Analog Integration → RF Integration

• FDSOI has superior price vs. performance metrics compared to FinFETs for many IoT applications
IoT Device Development Trends and Supply Chain
The boom of connected devices

Source: Piper Jaffray / Cisco
Technology supplier chain

- Without an IP available by Process supplier – key value of process may not be met and speed and performance may not meet requirements.
ST – Continued Investment in RFSOI and FDSOI

- 3 Fabs
- 4,930 employees
- 26,500 m² of cleanroom
- 1,380,000 Wafers / year in 8” wafers equivalent
Complete Design Solution Available

Complete & flexible offering to match your technical and business requirements

FD-SOI
- IPs: SerDes, Multimedia, CPU GPU, Interfaces, System, Foundations
- Design Tools & Methodologies: CAD kits, Design Factory, Si Validation & Qualification

RFSOI
- IPs: Power Amp, Envelope Tracking, Switching, LNA and Filters

Technology & Manufacturing

Kirk Ouellette More then Moore Workshop - Shanghai - March 17, 2015
<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF-SOI</td>
<td>RF - SOI the perfect technology for integration of RF Front End</td>
</tr>
<tr>
<td>28nm FDSOI</td>
<td>28nm FDSOI is the optimum technology for analog and RF integration for the next generation of IoT devices</td>
</tr>
<tr>
<td>14nm FDSOI</td>
<td>Best in market performance/power technology for Network Infrastructure ASICs</td>
</tr>
<tr>
<td>BICMOS9MW</td>
<td>BICMOS – Highest performance for RF infrastructure and future 5G RF</td>
</tr>
<tr>
<td>BICMOS55</td>
<td>BICMOS and Silicon Photonics are becoming the optimum solution for 500m+ Optical cable and future 1Tb Optical Products</td>
</tr>
</tbody>
</table>